Metric entropy of convex hulls in type $p$ spaces—The critical case

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

METRIC ENTROPY OF CONVEX HULLS IN TYPE p SPACES—THE CRITICAL CASE

Given a precompact subset A of a type p Banach space E, where p ∈ (1, 2], we prove that for every β ∈ [0, 1) and all n ∈ N sup k≤n k ′ (log k)ek(acoA) ≤ c sup k≤n k ′ (log k)ek(A) holds, where acoA is the absolutely convex hull of A and ek(.) denotes the kth dyadic entropy number. With this inequality we show in particular that for given A and β ∈ (−∞, 1) with en(A) ≤ n−1/p ′ (logn)−β for all n...

متن کامل

Metric Entropy of Convex Hulls

Let T be a precompact subset of a Hilbert space. The metric entropy of the convex hull of T is estimated in terms of the metric entropy of T , when the latter is of order α = 2. The estimate is best possible. Thus, it answers a question left open in [LL] and [CKP]. 0.

متن کامل

Gelfand numbers and metric entropy of convex hulls in Hilbert spaces

We establish optimal estimates of Gelfand numbers or Gelfand widths of absolutely convex hulls cov(K) of precompact subsets K ⊂ H of a Hilbert space H by the metric entropy of the set K where the covering numbers N(K, ") of K by "-balls of H satisfy the Lorentz condition ∫ ∞ 0 ( log2N(K, ") )r/s d" <∞ for some fixed 0 < r, s ≤ ∞ with the usual modifications in the cases r = ∞, 0 < s < ∞ and 0 <...

متن کامل

Entropy of Absolute Convex Hulls in Hilbert Spaces

The metric entropy of absolute convex hulls of sets in Hilbert spaces is studied for the general case when the metric entropy of the sets is arbitrary. Under some regularity assumptions, the results are sharp.

متن کامل

Entropy of convex hulls--some Lorentz norm results

Let A be a subset of a type p Banach space E, 1 < p ≤ 2, such that its entropy numbers satisfy ( εn(A) ) n ∈ `q,s for some q, s ∈ (0,∞). We show ( en(acoA) ) n ∈ `r,s for the dyadic entropy numbers of the absolutely convex hull acoA of A, where r is defined by 1/r = 1/p′+1/q. Furthermore, we show for slowly decreasing entropy numbers that ( en(A) ) n ∈ `q,s implies ( en(acoA) ) n ∈ `p′,s for al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2001

ISSN: 0002-9939,1088-6826

DOI: 10.1090/s0002-9939-01-06256-6